Surface nanobubbles or Knudsen bubbles?
نویسندگان
چکیده
The mysterious stability of nanobubbles on surfaces is a puzzle baffling soft matter and colloid scientists. Bubbles inside a fluid tend to be spherical, but surface bubbles have the appearance of blisters with typical widths of 1000 nanometers (nm) and heights of 20 nm. The existence of surface bubbles was proposed to explain the extremely long range and the magnitude of the strongly attractive forces observed between hydrophobic surfaces in water [1]. Nanobubbles are of interest because they are easily produced and are stable, and as such, their presence may be altering many aqueous interfaces and exerting influence on processes as diverse as froth flotation to the transportation of anticancer drugs across membranes. Classically, bubbles will deflate, leading to an increase in Laplace pressure (the pressure differential inside and outside a bubble) and a positive feedback loop that results in their rapid disappearance. However, surface nanobubbles, seemingly unaware of the rules, can remain stable for days. Now, writing in Physical Review Letters, James Seddon and coauthors [2] at the University of Twente, the Netherlands, have proposed an explanation for this stability, whereby the properties of the gas within a nanobubble generate a recirculation of the surrounding liquid, which effectively ensures that the gas escaping the bubble through diffusion is recaptured and the bubble lifetime is extended.
منابع مشابه
Modeling and Optimization of Nano-bubble Generation Process Using Response Surface Methodology
In this paper, size distribution of nano-bubbles was measured by the reliable and fast method of laser diffraction technique. Nano-bubbles were produced using a nano-bubble generator designed and made based on hydrodynamic cavitation phenomenon in Venturi tubes. A Central Composite Design with Response Surface Methodology was used to conduct a five factor, five level factorial experimental desi...
متن کاملThe effect of hydrogen nanobubbles on the morphology of gold-gelatin bionanocomposite films and their optical properties.
Gold-gelatin bionanocomposite films are prepared by the reduction of gold ions by sodium borohydride in an aqueous solution. It is shown that both the solution and the films on glass substrates contain entrapped hydrogen micro- and nanobubbles with diameters in the range of 200 nm-3 μm. The optical properties of gold nanoparticles in the presence of gelatin and hydrogen nanobubbles are measured...
متن کاملKnudsen gas provides nanobubble stability.
We provide a model for the remarkable stability of surface nanobubbles to bulk dissolution. The key to the solution is that the gas in a nanobubble is of Knudsen type. This leads to the generation of a bulk liquid flow which effectively forces the diffusive gas to remain local. Our model predicts the presence of a vertical water jet immediately above a nanobubble, with an estimated speed of ∼3....
متن کاملHemispherical nanobubbles reduce interfacial slippage in simple liquids.
Using an electrochemical quartz crystal microbalance (EQCM), we have produced bubbles of nanoscopic size at the front electrode of an acoustic shear wave resonator. Nanobubbles are usually expected to increase the resonance frequency because they have a low density and, also, because a liquid slides easily at a liquid-air interface. However, the bubble-induced frequency shift in many cases was ...
متن کاملSuperstability of surface nanobubbles.
Shock wave induced cavitation experiments and atomic force microscopy measurements of flat polyamide and hydrophobized silicon surfaces immersed in water are performed. It is shown that surface nanobubbles, present on these surfaces, do not act as nucleation sites for cavitation bubbles, in contrast to the expectation. This implies that surface nanobubbles are not just stable under ambient cond...
متن کامل